

 Chicago Interface Group, Inc.

CIG Package Utilities

Functional Overview

Chicago Interface Group, Inc.
858 West Armitage Avenue #286
Chicago, IL 60614 USA

Phone: (773) 524-0998
Fax: (815) 550-6088
Web: www.cigi.net
Email: support@cigi.net

CIG Package Utilities 12.0
Documentation version January 17, 2008

Copyright © 2008 Chicago Interface Group, Inc. All Rights Reserved
CIG Package Utilities is a trademark of Chicago Interface Group, Inc.
CA-E%DEVOR® is a registered trademark of Computer Associates International, Inc.

Page 1

Introduction

What are CIG Package

Utilities?

CIG Package Utilities (Package Utilities)
help CA-Endevor (Endevor) package users
work more efficiently and effectively. The
product, a combination of exits and external
utilities, provides an alternate path to
Endevor package management. Package
Utilities components, shown in figure 1
below, are as follows:

• back-end process installed in Endevor
package exits allowing for management
of element collisions, execution, and
reuse of packages

• utility for printing, archiving, and
clearing the audit log

• utility for reusing an executed package
• utility for building element and package

cross-reference reports

• ISPF front-end for viewing the Package
Utilities registry file and running reports.

Why Use Package Utilities if

You Have Endevor?

Package Utilities enhances and simplifies
Endevor package processing. You can now
reuse an existing package, which reduces
package build time, administrative overhead,
and DASD usage. Packages can be rebuilt
automatically, promoted to the next stage, or
regenerated in place. You now have one
central location which contains audit trail
information listing the “who, what, and
when” for each package. Finally, with four
different options, you can decide what action
to take if an element collision occurs on a
CAST or a non-package action.

Figure 1 shows the structure
of Package Utilities compo-
nents. There are external util-
ities for reporting, package
remake, and file mainten-
ance; two reports, the audit
log report and cross-
reference report; exits; and
ISPF panels for report gen-
eration and file listing

Figure 1
Package Utilities structure

ISPF Panel

External Utilities

PKGREG Utility CA-ENDEVOR Exits

Package Registry
VSAM FILE

Audit
Log

Report

Package
XREF

Report

CIG Package Utilities - Functional Overview

Page 2

What Happens to Existing, ‘In

Progress’ Packages?

Package Utilities work with packages at any
stage of the package life-cycle. The product
is designed as a drop-in: no analysis,
definition, or set-up is required. The first
time any package is acted upon, the Package
Utilities will determine if the package has
ever been registered in the Package Utilities
Registry File. If the answer is “no,” then the
package is registered at that time. For
instance, if the user has a dozen packages
that are “in-edit” status, the Package Utilities
would intercept these packages as soon as a
user modifies or casts the package. If the
package is already approved, the Package
Utilities would intercept the package during
the ‘before exec’ exit point.

Is There a Way to Transfer

Historical Packages?

For users who want to offload all historical
packages, there is an ARCHIVE exit point that
will perform a one-time package data extract
and then build an audit log. Minimally, each
package will have log information that
reflects the major dates and users of the
package. In addition, approvers and action
data will also be transferred to the log as if
the log was active at the time of approval
and execution.

To invoke the transfer process, you must
execute the PACKAGE ARCHIVE command
against the packages you wish to have
offloaded. There is no additional interface to
learn or invoke.

Package Utilities will then automatically
transfer Endevor package information from
the “before archive” exit point into the
Package Utilities Registry. Once this data is
transferred you can then perform PACKAGE

DELETE command and remove historical
information from Endevor’s package file.

Usage Scenario #1

Reusable Packages

The Need For Reusable Packages

The most common use of Endevor packages
is to promote a predefined list of elements
via a package up the life cycle map.
Typically, programmers or managers will
build a package at the entry point of the map
and then request that the elements in the list
be promoted up the map in a series of
moves. With standard Endevor packages,
packages must be rebuilt at every stage.

Enter CIG Package Utilities .

. .

After a Endevor package is created, Package
Utilities monitors every action against the
package id. With Package Utilities, Endevor
packages can be reused. Automatically or
via a batch utility, the old package will be
remade, the element list will be promoted,
and batch package SCL will be created to
recycle the package id in Endevor. All of
this happens invisibly to the user and
without losing historical package
information. For example, see figures 2 and
3.

CIG Package Utilities - Functional Overview

Page 3

Figure 2: Without Pack-
age Utilities, a pro-
grammer or administra-
tor must rebuild the
package from a fresh
element list at every
stage. Because of audit
trail requirements, the
package is often built
with a new name to re-
tain the old package in-
formation.

Figure 2
An example of one turnover without CIG Package Utilities

Figure 3: With Package
Utilities, the program-
mer has to build the
element list only once,
and the list will be
moved up the map au-
tomatically through the
REMAKE facility.

Figure 3 An example of one

turnover with Package Utilities

DEV

1 2

•A user must define the
element list, build,
cast, and execute CA-
ENDEVOR packages
four times for one
turnover.
•Four full CA-ENDEVOR
packages built and
maintained for each
turnover.

QA

3 4

STAGE1 to 2
STAGE2 to 3
STAGE3 to 4
STAGE4 to 6

CA-ENDEVOR

PROD

5 6

DEV

1 2

QA

3 4

PROD

5 6

CA-ENDEVOR

Package file

CIG Package Utilities

• Package Registry
• Package Archive File

-usage log

-action data

-registry data

Sequential

log of all

turnover

actions

Data available

for reporting

CIG Package Utilities - Functional Overview

Page 4

Usage Scenario #2

Element Collision Manage-

ment

Element Collisions Due to

Parallel Development

In the best of all worlds, only a single
programmer would work on a single piece of
code at one time. All updating would be at a
controlled pace and would be sequential in
nature. In contrast, most Endevor users are
faced with ever-increasing demands for
systems changes, both long-term and short-
term. In many shops, the same module may

be updated by different people, teams, or
locations. When not managed, this parallel
development activity leads to code
regressions and collisions.

With standard Endevor packages, an
element is CAST into a package but not
frozen from use by other packages or
subsequent Endevor actions. Even after
being CAST, the element can be retrieved,
updated, deleted, CAST into another
package, or even moved by another package.
This element activity results in package
failures and incorrect code implementation.
For example, see figure 4.

Figure 4 shows a case
where ELM1 has been
CAST into two different
packages. In the event
ELM1 is subsequently
modified, package fail-
ure will occur and the
incorrect level of element
ELM1 will be promoted.

Figure 4

Same element attached to multiple packages

DEV

1 2

QA

3 4
ELM1
ELM2
ELM3

PROD

5 6

CA-ENDEVOR

Package = Turnoverid1

ELM1 STAGE4

ELM2 STAGE4

Package = Turnoverid2

ELM1 STAGE4

ELM3 STAGE4

CIG Package Utilities - Functional Overview

Page 5

Enter CIG Package Utilities .

. .

At Endevor CAST time, each element is
checked against an element registry of
existing packages. Assuming the package
has no collisions, the package is registered
in the Package Utilities Registry. If the
element is found to be CAST to another
package id, then one of four events occur
based on user setup options:

• package is failed

• package status is set to “resolve” with all
other packages involved in the collision

• the user is warned of a collision

• collision is ignored.

In the example shown in figure 5, Package
Turnoverid1 was CAST first and its elements
were registered. When Turnoverid2 was
CAST, there was an element collision with
Turnoverid1. The package was fully CAST,
but set to RESOLVE status. Turnoverid1 was
also set to RESOLVE status. Prior to either of
these packages being executed or approved,
the packages would need to be RESET and
the collision would need to be resolved. The
log of each package id would be updated to
reflect collisions, warnings, and resolution.

Figure 5: The Package
Utilities Registry is used
to manage element colli-
sions. At Package CAST,
the registry is checked
for element collision sit-
uations. Collision man-
agement is controlled via
user-specified collision
rules.

DEV

1 2

QA

3 4
ELM1
ELM2
ELM3

PROD

5 6

CA-ENDEVOR
Package = Turnoverid1

ELM1 STAGE4

ELM2 STAGE4

Package = Turnoverid2

ELM1 STAGE4

ELM3 STAGE4

CIG Package Utiltities
Package = Turnoverid1

ELM1 STAGE4

ELM2 STAGE4
Set to Resolve

Package = Turnoverid2

ELM1 STAGE4

ELM3 STAGE4
Set to ResolveSet to Resolve

Set to Resolve

Figure 5
CAST collisions checks and events

CIG Package Utilities - Functional Overview

Page 6

Usage Scenario #3

Audit Trail &

Minimizing DASD Usage

Full History of Package id

Activity

Most Endevor users have very serious
auditing requirements dictating that an audit
trail of all element activity be kept.
Traditional Endevor package processing
builds many records per package id. If the
package id is used again, then all history is
lost, and thus the audit trail is lost. For audit
reasons, most shops keep fully executed
package ids for many months. Consequently,

the package file continually increases in
size, resulting in significant performance
degradation and excessive DASD
utilization.

Enter Package Utilities . . .

Every time the package id is updated, an
audit log record is recorded. These log
entries remain as historical record even if a
package is RESET, modified, deleted, or
CAST. This audit trail can also be extracted
for additional reporting and auditing
activities. For example, see figure 6.

Figure 6 shows an ex-
ample of a log for a
package that has been
built, executed, and
processed via the
REMAKE action. In this
example, two elements
have been moved twice
from stage A and then
from stage B.

Figure 6
Audit trail for Package ‘Test 1’

Date 95/06/25 TIME16:59 PACKAGE UTILITY
AUDIT LOG REPORT

FOR PACKAGE: TEST1 STATUS: APPROVED UTILIT

ACTIVITY USER DATE TIME PC

CREATE CIG01A 95/06/24 12:57 00
CAST CIG01A 95/06/24 12:57 00
 MOVE $CPOOL (01.00) TEST SYSA
 MOVE $ENTRY (01.00) TEST SYSA
EXECUTE CIG01A 95/06/24 13:01 04
REMAKE TPSXXX 95/06/24 13:01 00
COMMIT TPSXX 95/06/24 13:02 00
DELETE TPSXXX 95/06/24 13:02 00
CREATE TPSXXX 95/06/24 13:02 00
CAST TPSXXX 95/06/24 13:02 00
 MOVE $CPOOL (01.00) TEST SYSA
 MOVE $ENTRY (01.00) TEST SYSA
EXECUTE CIG01A 95/06/24 13:06 00
REMAKE CIG02A 95/06/24 13:06 00
16:59 PKG3163I PRI�TLOG COMPLETED SUCCESS

CIG Package Utilities - Functional Overview

Page 7

Immediate Offload of His-

tory and Reduction of

Package File Size

Once you begin using Package Utilities you
may want to transfer your current historical
package ids into the Package Utilities
Registry File. This allows Endevor
administrators to delete historical packages
from the Endevor package file, thus limiting
the contents of the Endevor package file to
only active packages.

After running an ARCHIVE action against the
package file, a PACKAGE DELETE action can
be used to remove historical Endevor
packages from the Endevor package file.

The result: a significant reduction in size of
the Endevor package file, along with
improved performance.

Getting Started

Package Utilities is a “drop-in” product. In-
stallation is quick and easy. The Package
Utilities QuickLoad program allows existing
Endevor packages to be loaded into the CIG
Package Utilities Registry. With QuickLoad
you can immediately begin reporting on
packages in your package file.

Package Utilities requires a minimum of
Endevor 3.9.

For more information on CIG Package Utilities or any other products or services available from
Chicago Interface Group, call (773) 524-0998 option 1.

blank

